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Abstract 
The phenomenon of technological learning has been observed across a wide spectrum of energy 

and environmental technologies. Quantitative modeling of experience curves has become an 

increasingly common method of representing endogenous technical change in long-term 

integrated assessment models used for energy and environmental policy analysis. However, 

many issues remain to be addressed in the use of experience curves to quantify long-term cost 

trends of energy technologies. This paper highlights and critically reviews some of the major 

sources of uncertainty and their implications to model outcomes. It draws on recent empirical 

literature, as well as on new data characterizing historical cost trends in the early deployment of 

three environmental technologies especially relevant to energy systems. Our findings indicate the 

need for a more thorough and systematic examination of the uncertainty of experience curve 

formulations on the outcomes of energy and environmental policy analyses that extend over 

many decades. 
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Uncertainties in Technology Experience Curves for  

Integrated Assessment Models  
 

 

1.  Introduction 
 

Assumptions concerning the nature and rates of technological change are arguably among 

the most critical for assessments of long-term energy and environmental issues such as 

global climate change. Large-scale integrated assessment (IA) models used for energy 

and environmental policy analysis traditionally have employed exogenously specified 

schedules or rates of improvement in technology performance and/or cost (Kypreos, 

1992, Manne and Richels, 1992, Nordhaus, 1994, Prinn et al., 1999). The principal 

drawback of this method is that technological change is assumed to be autonomous, free, 

and independent of other policy or economic variables. It has been shown, however, that 

improvements in technology are neither autonomous nor free, but dependent on factors 

like investments in research and development (Cohen and Klepper, 1996, Watanabe et 

al., 2003), capital deepening (Cohen, 1995, Klepper and Simons, 2000), economy-of-

scale effects (Sinclair et al., 2000), and the nature and stringency of government 

regulations (Taylor et al., 2003, Rubin et al., 2004b).  

In recent years, as computational barriers have fallen, endogenous models of technical 

change have gained increased acceptance and use in large-scale IA models, typically in 

the form of an “experience curve” (also called learning curves). Technology experience 

curves relate changes in specific investment cost to the cumulative installed capacity of 

the technology (a surrogate for the combined influence of factors such as those noted 

above). While this remains an imperfect representation of technical change, it is 
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nonetheless regarded as an important step toward more realistically representing the 

dependency of technical change on other factors in IA models. 

In this paper we focus on various uncertainties surrounding the use of experience curves 

in IA models. First we draw on recent literature to identify major sources of uncertainty 

in current experience curve formulations. We then present new empirical data to 

characterize the early (pre-commercial) cost trends for environmental technologies 

important for energy modeling. Finally, we discuss the potential influences and biases of 

current experience curve formulations on policy-relevant outcomes of IA model analyses, 

and suggest a path forward for incorporating uncertainties in the future use of experience 

curves as computational barriers continue to fall.  

 

2.  Background 
 

In 1936, the aeronautical engineer Thomas P. Wright published a landmark paper in 

which he observed that the average direct man-hours required to manufacture a given 

model of Boeing aircraft dropped systematically with each unit produced (Wright, 1936). 

Wright captured this phenomenon with an equation representing what he termed a 

“progress curve”: 

Υ = axb     (Equation 1) 

where Y is the estimated average direct man-hours per unit for the x units; a is the direct 

man-hours needed to make the first unit; and b (b<0) is a parametric constant. 

Specifically, Wright demonstrated that man-hour inputs dropped by 20 percent for every 
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doubling of cumulative output — an 80 percent “progress ratio,” where the exponent b 

equaled -0.32.  

Wright’s work remained relatively obscure until it was revisited a decade later by a group 

of economists at the then recently founded RAND Corporation (a “think tank” created by 

the U.S. Air Force in 1946 to develop a complete “science of warfare” during the Cold 

War era).  The RAND economists became vitally interested in the application of Wright’s 

work to the production of war materials—a phenomenon they would eventually call 

“learning by doing.” 

Subsequent work by the Boston Consulting Group (1968) applied Wright’s equation to 

the relationship between the average unit price and cumulative industry output of 24 

selected products.  Since then, this formulation (Equation 1) has been adopted in 

empirical studies to characterize learning phenomena in a wide range of sectors (Arrow, 

1962), including energy technologies (Yelle, 1979, Dutton and Thomas, 1984, Argote 

and Epple, 1990, IEA/OECD, 2000, McDonald and Schrattenholzer, 2001, Rubin et al., 

2004a). When applied to an industry or class product (rather than a specific 

manufacturing process), Wright’s “learning curve” equation is referred to as an 

“experience curve.”  

Despite several decades of research, our understanding of the technology innovation 

process is still rather limited. Various theories have been proposed to explain observed 

reductions in unit cost as cumulative output increases. Generally, they fall into three 

categories: (1) costs fall due to changes in production that include process innovations, 

worker familiarity in the use of tooling, improved management, and economies of scale; 
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(2) costs fall due to changes in the product itself including product innovations, redesign 

and standardization; and (3) costs fall due to changes in input prices. While intuitively 

satisfying, most of these explanations are only qualitatively descriptive and provide little 

quantification of the direct relationships or contributions of each factor to overall 

learning. Empirical experience curves thus reflect a combination of factors whose 

components are not yet well understood or quantified. 

Due to the computational complexity of large-scale integrated assessment models, and 

the non-linear, non-convex nature of the conventional experience curve (Equation 1), it 

was not until recent years that endogenous technology learning has been incorporated 

into some of these models (Grubler and Gritsevskii, 1997, Messner, 1997, Weyant and 

Olavson, 1999, Seebregts et al., 2000, Riahi et al., 2002). Detailed reviews of these 

developments can be found elsewhere (Grubb et al., 2002b, van der Zwaan and 

Seebregts, 2004).  Here we focus on some of the major uncertainties surrounding the use 

of experience curves. 

 

3.  Uncertainties in Experience Curve Formulations 
 

Today, the log-linear form of the experience curve (Equation 1) remains the most popular 

equation used to represent the costs improvements of technologies. Dutton and Thomas 

(1984), for example, surveyed 100 empirical and theoretical studies of progress functions 

in industrial engineering, economics, and management, and showed that the progress 

ratios generally fell in the range of 60% to 94% (i.e., learning rates of 6% to 40%). 

However, studies showing price increases were not included in their analysis. For 

energy-related technologies, McDonald and Schrattenholzer (2002) found a range of 
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learning rates varying from -14% to 34% with a median value of 16%. Studies of 

conventional and renewable energy systems similarly have employed the classic 

experience curve (Equation 1) to calculate a progress ratio (Ostwald and Reisdoft, 1979, 

Joskow and Rose, 1985, Claeson Colpier, 1999, Neij, 1999, IEA/OECD, 2000, Ibenholt, 

2002). Any nonlinearities in the empirical data most often are ignored, and only the “best 

fit” progress ratio (the value of 2
–b

 in Equation 1) is typically reported. In all energy-

related studies, the cumulative installed capacity of a technology is most commonly used 

as the independent variable, and the reported progress ratio typically applies to the period 

after the technology commercialization stage. 

The use of experience curves for forecasting or modeling future trends in energy-related 

technologies is beset by a number of uncertainties. For example: what is the “correct” 

progress ratio (or learning rate) applicable for a new energy or environmental technology, 

or a currently commercial technology? What is the appropriate functional form of the 

experience curve for the selected technology? Does the learning rate remain constant over 

time, or does the effect of “learning-by-doing” change over the modeling period? Do 

costs always decline, or might they also increase, and if so, why or how? While there are 

still no clear answers to these questions, it is important to recognize these sources of 

uncertainty and their influence to the results of IA models. Here we attempt to summarize 

a number of insights and findings from the literature, as well as from our own recent 

studies of environmental technologies. 

3.1 The S-Shaped Learning Curve 

Historically, a number of authors have suggested alternative formulations of the learning 

curve based on empirical observations, especially deviations from log-linearity at the 



 6 

beginning and tail of the curve.  In one of the earliest studies, Carr (1946) argued that the 

cumulative average curve for airplane production was best represented by an S-shaped 

curve. This concavity early in the curve also was recognized independently by the Boeing 

Airplane Company (n.d.) and by the Stanford Research Institute (SRI, 1949b, a). The SRI 

researchers proposed adding a term, called the “B” factor, to the conventional formula 

(Equation 1) to represent the equivalent units of experience available at the start of a 

manufacturing program. The SRI studies claimed that the revised formula, Y = a (x+B)
b
, 

described the empirical production data better than the conventional log-linear function.  

In our own studies of experience curves for environmental technologies at coal-fired 

power plants (Rubin et al., 2004b), we also found that experience curves with initial 

concavity best fit the data for two widely used technologies—flue gas desulfurization 

(FGD) systems for sulfur dioxide (SO2) control, and selective catalytic reduction (SCR) 

systems for nitrogen oxides (NOx) control (see Figure 1). In the case of FGD, the low 

initial learning rates resulted in part from the rapid and widespread deployment of “first-

generation” technology in response to environmental regulatory requirements, with little 

time for learning. This was followed by improvements in succeeding generations of the 

technology based on factors including continued R&D and experience with the initial 

(and subsequent) installations.   

In addition to studies suggesting concavity at the beginning of some learning curve, many 

others have challenged the log-linearity hypothesis in the latter part of the curve. Guibert 

(1945) viewed the progress curve as having a horizontal asymptote that was approached 

after a large number of aircraft construction units had been produced. A study by the 

Boeing Airplane Company summarized the cost reduction on the L-15 airplane and 
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concluded that the slope of the unit cost curve became flat (exhibiting “level-off”) with 

sufficiently large cumulative output. They believed this was probably due to limitations 

imposed by a given set of tooling. They also found that the level-off point seemed to 

occur sooner for processes exhibiting steeper learning rates, and for the manufacture of 

small aircraft compared to large aircraft. Similarly, Asher (1956) analyzed data for nine 

fighter aircraft models and found that the learning curve began to level off at about 125 

units, and that extrapolating to between 100 and 1000 units would result in an estimating 

error of about 25%.  

An extensive survey by Conway and Schultz (1959) studied the existence of learning in 

four firms manufacturing products with complex as well as simple designs, and 

cumulative production quantities from fifty to two hundred million units. Their survey 

found leveling-off, or a decrease in the learning curve slope, when large cumulative 

production quantities were reached. More recently, Klepper and Graddy (1990) 

assembled data on the number of firms, outputs, and prices for 46 new products from 

their initial introduction through the year 1972. They developed both quantitative and 

qualitative measures characterizing the evolution of new industries, and found that all 

products appeared to follow a similar general pattern over time, though with considerable 

quantitative variations. The study found that during both the growth and shakeout stages, 

the number of firms and total output grew while prices fell. Once the number of firms 

stabilized, the rates of reduction in price and increase in output leveled off and remained 

constant over time, typically after 30 to 40 years.  
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3.2  Cost Increases During Early Commercialization 

For many advanced and complex technologies, especially large-scale technologies such 

as power plants and their environmental control systems, early cost estimates based on 

laboratory-scale projects and pilot plants are typically lower than the costs subsequently 

realized for the initial set of full-scale commercial plants. Thus, costs often increase 

rather than decrease in the early phase of commercial deployment. The reasons for such 

increases are typically linked to shortfalls in performance and/or reliability that result 

from insufficient data or experience for scale-up and detailed design, or from new 

problems that arise during full-scale construction and operation.  

Although this phenomenon has been long recognized and often described qualitatively 

(Merrow et al., 1988), there are relatively few empirical studies that document such 

trends for energy and environmental technologies. One recent study, however, reported a 

progress ratio (PR) above 100 percent for an experience curve for natural gas combined 

cycle (NGCC) systems in the period 1981-1991 (Claeson Colpier and Cornland, 2002). 

This was followed by subsequent cost declines. Studies of British and Germany wind 

power (Ibenholt, 2002) and photovoltaic (PV) technologies (Schaeffer, 2003) also found 

progress ratios above 100 percent at the initial stages of deployment. Though no 

explanations were provided in the original studies, these rises were likely due to the 

general observation that the total cost of new technology cannot be reduced as quickly as 

costs are added through design changes and product performance improvements in the 

early stages of commercialization (Neij, 1997). 

Our own examination of past experience for two large-scale environmental technologies 

used at fossil fuel power plants  FGD systems for SO2 control and SCR systems for 
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NOx control also is found to exhibit cost increases during early commercialization. We 

present this data below, along with observed cost trends for a widely-studied (but not yet 

widely deployed) technology for CO2 capture at coal-fired power plants. 

3.2.1   Early Commercial Cost Trends for FGD Systems 

Under provisions of the Clean Air Act, the U.S. federal government funded research and 

development on SO2 removal processes from power plant flue gases starting in the 1960s, 

including several conceptual design and cost studies. Early cost evaluation for those 

technologies involved many design assumptions since technical data were limited. 

Equipment costs were sketchy since most vendors had yet to fabricate and erect the large 

gas scrubbing devices required for full-scale systems, and very little corrosion data were 

available to properly select materials of construction for the service involved. In many 

cases, the “technological optimism” of process developers tended to maximize process 

potential and minimize problem areas such as corrosion, scaling, solids disposal, sulfite 

oxidation, mist elimination, gas reheat, operational turndown, and pH control.  

Cost estimates in the early 1970s were subject to further uncertainties in scale-up factors 

based on experimental and prototype installations. Despite some commercial applications 

on oil-fired power plants in Japan, a basis for more accurately assessing full-scale 

performance and the costs of FGD installation were not yet established for U.S. coal-fired 

plants. In the 1970s, the two questions uppermost in the minds of the utility industry 

regarding FGD systems were system reliability and cost (U.S. EPA, 1974a, b). Cost 

estimates of the late 1960s proved to be considerably lower than actual costs due to the 

optimistic view of vendors and analysts that system unknowns would be controlled, and 
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that inexpensive materials of construction could be utilized (Skopp, 1969, The M. W. 

Kellogg Company, 1971). However, as time passed, and the results of pilot-plant and 

early installations became known, the magnitude of cost estimates was scaled up 

considerably (Spaite, 1972, Battelle, 1973). Figure 2 shows the historical trend of early 

economic assessments of FGD costs for a typical coal-fired plant. Based on early 

learning-by-using, costs increased by as much as factor of five as designs were modified 

to achieve the system reliability and performance needed to comply with regulatory 

requirements. After a decade of experience and learning, costs finally began to decline in 

the 1980s. 

3.2.2   Early Commercial Cost Trends for SCR Systems 

The early economic evaluations of SCR costs at U.S. coal-fired power plant showed a 

trend similar to FGD systems, although in this case SCR technology was not actually 

deployed at U.S. coal plants until nearly two decades later. The earliest cost estimates 

were based on an extrapolation of early Japanese experience with SCR on oil and gas-

fired plants (Mobley, 1978). Differences in plant operating conditions and fuel 

characteristics (such as sulfur and heavy metals content) were recognized, but not 

factored into these early cost estimates. Subsequent economic studies projected higher 

costs which included contingencies for lack of experience with high sulfur U.S. coals, 

and lack of general operating experience with SCR systems (Maxwell et al., 1980, 

Maxwell and Humphries, 1981, EPRI, 1982).  

Figure 3 shows the historical trend in cost estimates for a typical U.S. coal-fired plant. 

Note the initially optimistic assessments prior to the first commercial SCR installations. 

Cost estimates for U.S. facilities eventually declined after a decade of Japanese and 



 11 

German experience, together with U.S. pilot programs, demonstrated increasingly lower 

capital and operating costs, longer catalyst lifetimes, and lower catalyst prices than had 

been assumed earlier (the result of learning and competition in both non-U.S. and U.S. 

markets) (Yeh et al., 2005).  

3.2.3   Early Commercial Cost Trends for Amine-Based CO2 Capture Systems 

Environmental technologies that capture CO2 from power plant flue gases are of growing 

worldwide interest as a potential climate change abatement measure, and thus are also 

extremely relevant to integrated assessment models. In contrast to FGD and SCR 

systems, which were developed largely in response to environmental regulatory 

requirements, technologies for capturing CO2 from industrial gas streams (including 

natural gas, synthesis gas, and flue gas) were developed for commercial applications, 

mainly in the petroleum and chemical industries. A variety of CO2 capture systems are in 

regular use worldwide, with the CO2 from gas purification processes either vented to the 

atmosphere or used by other commercial processes.  

One of the most common technologies to separate CO2 from gas streams are amine-based 

absorption systems. Flue gas scrubbing systems employing monoethanolamine (MEA) is 

also one of the leading technologies proposed to control greenhouse gas emissions at 

coal-fired power plants (Rao and Rubin, 2002). The earliest studies of the cost of CO2 

capture at coal-fired power plants (Pappano et al., 1976, Anada and King, 1982) were 

motivated by the potential use of CO2 for enhanced oil recovery (EOR) at a time when 

world oil prices were at their peak (around 1976-1985). It was not until the 1990s that 

capturing CO2 at electric power plants (in conjunction with geological storage systems) 
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gained serious attention as a greenhouse gas mitigation option (e.g., (Smelser et al., 1991, 

Hendriks, 1994, IEA GHG, 1995).  

The main challenge facing amine-based CO2 capture technology is to reduce the overall 

cost by lowering both capital and operating expenses, especially the substantial energy 

requirements associated with sorbent regeneration. Toward this end, the advent of 

inhibited amine formulations in the post-1980 era has allowed higher sorbent 

concentrations, significantly reducing the energy penalty associated with this technology 

(Figure 4). At the same time, the requirements for newer corrosion-resistant materials 

contributed to higher capital costs relative to early cost estimates (Figure 5).  More recent 

studies (Chapel et al., 1999, DeLallo and Buchanan, 2000, Simbeck and McDonald, 

2000, Rao and Rubin, 2002) show a subsequent decline in the estimated capital cost of an 

MEA capture unit, reflecting further improvements in overall system design. Continued 

technology advances leading to both capital and O&M cost reductions are anticipated 

(Rao, 2003).  

Note that the cost trend in Figure 5 again shows an initial increase followed by gradual 

declines. However, unlike the cost trends reported earlier for FGD and SCR systems, no 

CO2 capture systems for coal-fired plants at the 500 MW scale (the basis for Figure 5) 

have yet been built. To date, there have been only a few commercial applications of CO2 

capture at coal-fired units, but at sizes an order of magnitude or two smaller than required 

for a modern coal-based power plant. Thus, all cost estimates shown here have yet to be 

validated by actual projects, and the potential for cost increases with scale-up cannot be 

ruled out based on experience with other technologies. 
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3.3  Interactions of Cost and Performance  

The experience curves presented above for SO2, NOx and CO2 control technologies were 

each based on a constant pollutant removal efficiency in order to characterize the cost of 

doing the same job at different points in time. However, most of the experience curves 

used in IA models to characterize cost trends for energy technologies incorporate 

simultaneous improvements in technology performance. For example, increases in the 

thermal efficiency of steam turbine generators contributed to the remarkable productive 

growth and price reductions for electric power since the birth of that industry (Hirsh, 

2003). The cost of photovoltaics has fallen more than twenty-fold during the four-decade 

history of PV, due in part to a nearly three-fold improvement in efficiency (Ramakumar 

and Bigger, 1993). Similarly, cost reductions for wind energy technology have been due 

in part to improved efficiency and reliability (Neij, 1999).  

For the cases above, efficiency improvements are implicitly embedded in the unit cost 

data used for an experience curve (e.g., $/kW or $/kWh for an electric power generator). 

However, IA models with endogenous technical change for energy and environmental 

technologies typically do not incorporate simultaneous changes in both performance and 

cost. Rather, performance parameters like thermal efficiency (used to compute fuel 

requirements) or pollutant removal efficiency (used to compute environmental emissions) 

often are held constant or improved at rate exogenously specified by modelers while only 

the unit cost of the technology is determined endogenously. One consequence of such 

assumptions may be to overestimate the long-term cost of achieving environmental goals 

like SO2 or CO2 reductions. For example, our research on SO2 removal technologies 

showed that the average SO2 removal efficiency of FGD systems increased by 2.6% for 
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each doubling of cumulative installed capacity over the past several decades (Figure 6). 

While improved performance of environmental technologies generally comes at a higher 

initial cost, subsequent cost reductions are such that a high-efficiency SO2 scrubber today 

costs much less than a lower-efficiency system a decade ago. Experience curves 

reflecting such interactions between performance and cost have not yet been developed 

and incorporated in IA models used for policy analysis.   

3.4  Effects of Market Structural Change and Shakeout  

Factors related to the marketing of new technologies also influence the shape of a 

learning curve. Non-linearities in price-based experience curves were regularly observed 

by the Boston Consulting Group (1968), and attributed in part to structural changes and 

competition in the marketplace. They hypothesized that at the development stage prices 

are set below cost to establish an initial market. As sales volume and experience reduce 

costs, these prices are maintained, gradually converting the negative margin to a positive 

one. However, if prices do not eventually decline as fast as costs, competitors are 

attracted to the market. Thus, at some point prices begin to decline faster than costs. 

Later, a reverse bend in the price curve is reached when the market become mature, and 

subsequently prices and costs change at the same rate. 

 In the case of renewable energy technologies like wind and solar energy systems, policy 

measures such as investment subsidies, production subsidies, tax credits and buy-back 

rates have been used to provide incentives to stimulate the demand for high-cost 

technologies. Such policy measures create a price umbrella in which prices decline more 

slowly than actual costs. After the technologies gain a foot-hold, shakeout begins and the 
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rate of product innovation tends to slow down following emergence of a dominant 

design. As noted earlier, the analysis by Claeson-Colpier and Cornland (2002) of the 

specific investment price for large NGCC power plants found cost increases during 1981-

1991, followed by subsequent decreases. The authors characterized the first period as the 

development and price-umbrella stages, noting that competition in the NGCC market was 

weak and not many plants were built during that period. Prices also rose as a result of 

increased technical complexity, the use of new advanced materials, and improvements in 

thermal efficiency. The subsequent price decreases were attributed mainly to a market 

shakeout stage as several manufactures competed to gain market share. Price declines 

also reflected some cost reductions due to improved performance of the NGCC system 

and a shift towards more standardized and modularized machines. Parente et al. (2002) 

characterized a similar structural change in the experience curve for photovoltaic 

modules, noting more rapid cost declines from 1991-2000 compared to the previous 

decade. The change was attributed to market competition and increasing economies of 

scale with growing production and use of PV technology. 

3.5  Discontinuities and Forgetting 

Another uncertainty in the use of experience curves is the potential for organizational 

“forgetting” in which the knowledge acquired through learning-by-doing may decay or 

depreciate over time (Argote and Epple, 1990, Argote, 1996, 1999). For example, Argote 

found that the production of the Lockheed L-1011 TriStar aircraft had a positive progress 

ratio as production increased from 1972-1975, but a negative progress ratio after a 

production cut in late 1975, after which costs rose to exceed price. This “forgetting-by-

not-doing” was attributed to the loss of knowledge associated with laying off many 
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experienced workers, leading to a shortage of personnel and parts, and a lack of 

experienced workers when production later resumed.  

Similarly, Sturm (1993) analyzed the operating experience of nuclear power plants from 

1981 to 1991 in Eastern and Western Europe, the former Soviet Union, and the United 

States. He found that while all Western countries reduced their unplanned outages, the 

former Soviet Union and all countries in Eastern Europe experienced an increase in 

unplanned outages and a decrease in plant availability. He suggested that this might have 

resulted from political and economic reorganizations that caused labor turnover, 

difficulties in obtaining spare parts and maintaining plants, and lack of incentives to 

provide adequate training programs—another illustration of organizational forgetting.  

3.6  Other Factors: Social, Economic and Political Effects 

Departures from the conventional (log-linear) experience curve can also arise from 

changes in regulatory requirements such as environmental, health and safety standards, 

changes in work rules, and improved design standards. Such changes can increase the 

total cost of a technology even though the unit costs for wages, materials, and equipment 

may be static. For example, Cantor and Hewlett (Cantor and Hewlett, 1988) found that 

despite significant learning-by-doing benefits at the firm/constructor level, new 

regulations imposed by the Nuclear Regulatory Commission (NRC) contributed to 

unprecedented increases in construction costs for nuclear power plant from 1979-1988. 

Similarly, Hewlett (1996) found that real O&M costs for U.S. nuclear power plants 

escalated at an annual rate of about 11 percent from 1975-1987, primarily because of new 

safety regulations imposed by the NRC. 
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In a study of coal-burning power plants, Joskow and Rose (1985) found that the real cost 

per kilowatt for constructing a power plant in the U.S. declined during the early and mid-

1960s, stabilized in the late 1960s, then climbed substantially during the 1970s and 

1980s. Their study controlled for scale effects, technological differences, input price 

changes, major environmental control technologies (scrubbers and cooling towers), and 

other cross-sectional differences in real costs. The cost increases appeared partially to 

reflect the increased costs of responding to new environmental, health and safety 

regulations, as well as to increased construction times and a decline in construction 

productivity.  

Finally, societal factors such as public opposition to a technology also can strongly 

influence rates of technology diffusion and learning. Perhaps the most well-known 

example is nuclear power, where public opposition has effectively halted the diffusion of 

this technology in many countries (e.g., no new plants constructed in the United States 

since 1978) (U.S. NRC, 2003). Even clean renewable technologies are not immune from 

this phenomenon: in Norway and elsewhere the siting of new wind energy systems is 

increasingly being opposed on aesthetic and other grounds. 

4.  Implications for Modeling and Policy Analysis 

While the adoption of experience curves and endogenous technological learning represent 

important advances in integrated assessment modeling, the factors discussed above 

introduce uncertainties that can significantly influence the results of energy and 

environmental policy analyses. In general, models that incorporate induced technological 

change tend to find accelerated rates of emissions abatement and lower costs of 
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environmental compliance compared to models that ignore technological change (Grubler 

and Gritsevskii, 1997, Messner, 1997, Grubler and Messner, 1998, Grubb et al., 2002b, 

van der Zwaan et al., 2002). However, the sensitivity of policy-related variables to the 

assumed learning rates can be highly non-linear. Small changes in the assumed 

technology progress ratio (or learning rate) can change investment patterns considerably, 

and thus the conditions for long-term competitiveness of new technologies (McDonald 

and Schrattenholzer, 2002, Barreto and Kypreos, 2004).  

For similar reasons, the shape of an experience curve can also significantly influence the 

outcomes of long-term assessments and policy analyses. A slow initial learning rate for a 

new technology, characteristic of an S-shaped curve, can discourage the early adoptions 

and investments needed for long-term growth and innovation relative to competing 

technologies with more “optimistic” experience curves (such as the prevailing log-linear 

shape). As a result, some technologies may be “locked-out” of the longer-term picture, 

affecting the overall cost, technology mix, and other outcomes of interest such as 

expeditures for R&D (Weyant and Olavson, 1999). The declining rate of improvement at 

the tail of an S-shaped curve can similarly alter outcomes relative to the conventional log-

linear formulation where costs fall indefinitely. In the later case, overestimating cost 

reductions of mature technologies in the IA models will affect the competitiveness of 

new competing technologies.  

Although computationally more demanding, the use of input distributions of learning 

rates would better represent our limited understanding of the processes underlining 

technology progress functions. Grubler and Gritsevskii (1997) used a simple optimization 

model with endogenous technological change, with uncertainty in learning rates 
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represented by a lognormal distribution function around the mean value. They showed 

that when the rate of learning is certain (i.e., perfect foresight), the optimal solution is to 

invest heavily and early in new technology because the resulting cost declines achieved 

through learning causes the technology to quickly become competitive. Barreto and 

Klaassen (2004) found similar results. However, when learning rates were uncertain (as 

in the real world), the optimal solution also became less certain. As a result, there was 

broader investment in a portfolio of technologies, with slower diffusion and market entry 

of any particular technology. Messner et al. (1996) also incorporated uncertainties 

concerning future technology performance and found that it tended to spread risk over a 

larger number of technologies to cope with uncertainties in the development paths.  

Despite the historical evidence, current large-scale IA models typically do not incorporate 

improvements in environmental performance for new generations of energy or 

environmental technologies (e.g., an improved CO2 capture system that removes 99% 

CO2 instead of 90%) endogenously. As noted earlier, one consequence of such 

assumptions may be to overestimate the long-term cost of achieving environmental goals. 

Nor have IA modelers incorporated the cost increases that often occur with initial 

deployment of a technology, or which can accompany slowdowns in technology diffusion 

that lead to institutional forgetting, as described earlier.  

5.  Conclusions and Caveats 

The incorporation of induced technological change in large-scale integrated assessment 

models is an important development that can provide a valuable and more rigorous means 

of examining a wider range of policy options and the appropriate degree, timing, and 

distribution of mitigation efforts required to address issues like global climate change. 
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Nonetheless, the modeling of technological change and innovation is still in its infancy. 

As elaborated in this paper, there exists a number of key uncertainties surround the use of 

experience curves to represent technological learning and diffusion. 

In the near term, more extensive computer experiments are needed to explore the 

implications of alternative experience curves formulations, such as an S-shaped curve in 

lieu of the traditional log-linear curve. Recent empirical evidence suggests this may better 

approximate the learning behavior of large-scale technologies deployed in response to 

emission reduction requirements. As computational barriers continue to fall, wider use of 

distributions of learning rates can help explore the sensitivity of model outcomes (and 

policy implications) to learning rate assumptions. All else being equal, IA models that 

can utilize input distributions of learning rates will provide greater realism than those 

employing single values.  

Technology cost and performance are two closely coupled parameters which are often 

treated independently, and specified exogenously, in energy-economic models. Because 

of their importance in economic and policy analysis, there is a need for improved 

endogenous modeling methods that account for the interaction of these two factors for 

key energy and environmental technologies. 

This paper does not address other factors that contribute to induced technological change, 

such as investments in R&D, and spillovers from R&D. Early work by others has begun 

to explore the effects of these two factors in the context of IA models. In general, this 

work has found that the incorporation of these two factors, along with learning-by-doing, 

tends to reduce the costs of environmental policy, accelerate emissions abatement, and 
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often lead to positive spillover and negative leakage (Watanabe et al., 2000, Grubb et al., 

2002a, Watanabe et al., 2003, Barreto and Klaassen, 2004). More detailed models of the 

learning process that incorporate such effects will no doubt improve the ability of IA 

models to more accurately represent the policy-related outcomes of technology 

innovations. 
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LIST OF FIGURES 
 

Figure 1. Concave versus log-linear (Equation 1) learning curves fitted to the capital 

costs of flue gas desulfurization (FGD) and selective catalytic reduction (SCR) 

systems at standard U.S. coal-fired utility plants. The definitions of standard 

plants are defined in Figures 2 and 3.  

 

Figure 2. Capital and annualized operating and maintenance (O&M) costs of a wet 

limestone FGD system for a standard new coal-fired power plant. Except where 

specified, a standard plant is sized 500 MWe, burning 3.5% sulfur coal, and 

achieve 90% SO2 removal efficiency. The earliest plants, however, did not 

achieve the high levels of availability and reliability required for utility 

operations, leading to more costly designs in later years. 

 

Figure 3. Capital and levelized costs of a SCR system for a standard (500 MWe, burning 

medium sulfur coal, 80% NOx removal) new coal-fired power plant. Solid 

diamond dots are studies based on low-sulfur coal plant, which requires lower 

SCR capital cost. Empty circles are studies evaluated prior to any commercial 

SCR installation on a coal-fired utility plant. 

 

Figure 4. Decreasing trend of the minimum regeneration heat requirement of MEA 

solvent for CO2 recovery process.  

 

Figure 5. Estimated capital cost of an amine (MEA) carbon capture system at a standard 

coal-fired power plant (500 MWe, CO2 capture efficiency = 90%). The capital 

cost estimates include the cost of compression (to about 2000 psia) and drying 

captured CO2, but do not include the cost of building new power generation 

plants to supply the energy required for capture plant operation.   

 

Figure 6. Improvements in SO2 removal efficiency of commercial lime and limestone 

FGD systems as a function of cumulative installed wet FGD capacity.  
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FIGURE 2 
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